

Analysis of tropical cyclone activity in 3 recent versions of the Canadian global NWP system

A. Zadra¹, B. Dugas¹, A.-M. Leduc²,

R. McTaggart-Cowan¹, M. Roch¹, P. Vaillancourt¹

¹RPN-A – Environment Canada

²CMDN – Environment Canada

TC Tracking and Verification

> Main conditions used to identify and track tropical storms [based on Walsh (2007)]:

- 1) Minimum central SLP must be < 1012 mb
- 2) Relative vorticity at the center must be > 1e-5 s-1
- 3) Maximum near-surface wind > 22 kt within a 170 km radius
- 4) Distance between independent storms > 400 km
- 5) 850 mb vorticity > 250 mb vorticity within radius of 170 km

> Verification against best track data

- 1) for a hit: distance between observed and predicted storm must be < 600 km
- 2) **contingency tables** (hits, misses and false alarms) as a function of lead time for separate basins

black: best track data

color: tracks from different versions

of the model

Example of tracking output

orm# Po	int#	i	j	date	time	lat	lon	vort	pres	wind
1	1	424	415	2008100800	84	34.35	-169.65	0.00024	1006.39172	36.31882
1	2	427	416	2008100806	90	34.65	-168.30	0.00031	1003.41284	40.96595
1	3	431	416	2008100812	96	34.65	-166.50	0.00028	1001.40710	37.94922
1	4	435	421	2008100818	102	36.15	-164.70	0.00026	1000.51678	38.36294
1	5	439	423	2008100900	108	36.75	-162.90	0.00022	998.91016	37.01458
1	6	445	426	2008100906	114	37.65	-160.20	0.00026	999.48328	39.13258
1	7	450	431	2008100912	120	39.15	-157.95	0.00023	999.67926	37.87506
2	1	606	332	2008100612	48	9.45	-87.75	0.00036	1007.53851	22.39978
2	2	606	331	2008100618	54	9.15	-87.75	0.00037	1007.77246	28.02093
2	3	608	330	2008100700	60	8.85	-86.85	0.00042	1006.43024	29.09504
2	4	608	331	2008100706	66	9.15	-86.85	0.00035	1007.10114	26.94382

NOTE: Similar data are available from TC best-track data (e.g. NHC) for observed storms.

TC False Alarm Statistics

- > 2008 season (70 global 6-day forecasts: 03-Jul to 15-Oct, every 36h)
- > verification against HURDAT and JMA

False alarms per forecast as a function of lead time between the 2008 implementation of the Canadian global model (black) and the upcoming Strato-2 release (red). The 5-95% confidence interval is computed using a bootstrapping technique and is shown by shading in the plots.

TC Track Error Statistics

TC Intensity Error Statistics

- Mesoglobal and strato-1 exhibit similar intensity (SLP and wind speed) errors
- Changes in the CPS in strato-2 reduce the over-deepening of TCs, so an increase in intensity biases is expected
- Continued intensification over the course of the integration suggest that the model/analysis system is not perfectly balanced:
 - Model "climate" may be too unstable
 - Analysis increments (~160 km) may weaken initial structures

Errors (dashed) and biases (solid) for forecast days 1-6 in central SLP (top) and mean near-surface wind speed (bottom).

Conclusions

- Two ways to adapt this approach for ensembles:
 - Provide distributions (pr scattered plots) instead of single points for biases
 - Calculate standard deviations including individual members

